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The aim of this paper is to provide a contemporarily relevant survey of studies on
non-linear vibrations of shell-type structures. The e!ects of geometrical non-linearity, and
speci"c di$culties encountered in non-linear dynamic analysis of shell-type structures are
presented and discussed. Studies on non-linear vibrations of shells are categorized by
di!erent shell con"gurations (shapes) in a chronological order. Also, the most commonly
used methods of modelling and solution are reviewed and commented. Published reviews on
non-linear vibrations of shell-type structures including complicating e!ects of anisotropy,
initial stress, added mass, elastic foundation, sti!eners, open geometry (singly and doubly
curved), transverse shear deformations, torsion, and interaction with #uid are also surveyed.
Comments on the previous non-linear works are presented and some orientations for future
research are suggested. Another purpose of this paper is to provide engineers, scientists and
researchers with a list of 175 references, which should be very useful for locating relevant
existing literature quickly. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Problems related to the vibration of shell-type structures are encountered in many branches
of industry, including aeronautical engineering, ocean engineering, and civil engineering
[1, 2]. The non-linear vibration of thin circular cylindrical shells is of special interest in
aerospace (design of rocket and launch vehicle structures) [3, 4], in which the structures
must have a weight as low as possible and a strength as high as possible, and hence, may
exhibit large amplitudes of vibration. According to the linear theory of vibration, the
natural frequencies and mode shapes are independent of the amplitude of vibration. In
many instances, if the amplitude of vibration is large,� such a result will not be justi"ed, due
to one or another non-linear e!ect. In general, the interest in the vibration of non-linear
systems centres on geometrically non-linear vibration occurring at large displacement
amplitudes, which leads to non-linear strain}displacement relationships.
The "rst available review on non-linear vibrations of shells was made by Evensen in 1974

[5]. He presented the early developments concerning isotropic circular cylindrical shells
�The large displacements mentioned here and elsewhere need only be of the order of the shell thickness for the
non-linear e!ects to be signi"cant. That is, they do not need to be truly large (many times the shell thickness).

0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



162 F. MOUSSAOUI AND R. BENAMAR
during the years from 1955 to 1971. An excellent monograph by Leissa [6] deals mostly
with linear vibrations of shells, but also includes some references on large vibration
amplitudes of circular cylindrical shells. This monograph provides a wealth of information
on linear dynamic problems of circular cylindrical shells (approximately 500 references), but
only about 25 references dealing with the problem of non-linear vibration of shells, covering
the period from 1955 to 1970. Most of the monograph was devoted to the analysis of closed
circular cylindrical shells having various boundary conditions, cutouts, e!ects of added
mass, anisotropy, variable thickness, initial stress, and other complicating factors. However,
a section was written on the non-linear e!ects resulting from large displacements.
Sathyamorthy and Pandalai [7, 8] presented a review of existing literature in the area of
large vibration amplitudes of plates and shells in a series of two papers. Part I of the series
[7] contains a survey of vibrations of disks, membranes and rings. Also, it included
information on simple non-linear systems in order to introduce the reader to non-linear
dynamic problems. Non-linear vibrations of plates and shells have been surveyed in the
second part [8]. These review papers, however, were mainly con"ned to cases with
geometric-type non-linearity. In another paper authored by Leissa [9], an overview of the
problem of non-linear vibrations of plates and shells reviewing the literature on the subject
for the period from 1978 to 1983, was presented. The scope of this overview has been
restricted to free undamped vibrations and listed 17 references. Recently, Qatu [10]
reviewed the development of research into vibration of shallow shells. Speci"c attention was
given to laminated composite shallow shells with complicating e!ects. More recently,
a review article with bibliography documents, focussed on recent developments in the
vibration analysis of thin, moderately thick, and thick shallow shells, has been presented by
Liew et al. [11]. The studies devoted to moderately thick shells, incorporating the e!ects of
transverse shear deformation and rotary inertia, have been reviewed in detail. However, it
can be seen from the review that the studies concerned with the non-linear e!ects induced
by large displacement amplitudes on the vibrations of thin shells have not been given
su$cient attention. The author reviewed and presented in the bibliography only about 15
references dealing with non-linear free vibrations of shells. More recently, in a series of
papers presented by Amabili et al. [12, 13], it is stated that &&A full literature review of work
on the non-linear dynamics of shells in vacuo and "lled with #uid or surrounded by
quiescent #uid has been given by Amabili et al.,2.'' This statement concerned a previous
paper by the same authors [14]. However, it may be noticed that this review was restricted
only to closed circular cylindrical shells, excluding the studies of other con"gurations and
complications which may be encountered in non-linear vibrations of shells. An addendum
has been published by Amabili et al. [15] in order to complete the literature review of closed
cylindrical shells, in which eight additional references have been mentioned. Generally, one
may remark that only few references exist, in old as well as in new literature, which deal with
non-linear vibrations of thin shell-type structures, compared with beams and plates, for
which numerous works on the various aspects of non-linear vibrations may be found (see
for example Table 1 of reference [9], and recently references [16, 17]).
The present review can be considered as a complement to the works of Evensen [5],

Leissa [6], Sathyamoorthy [7, 8], Leissa [9], Qatu [10], Liew et al. [11], and Amabili et al.
[14, 15]. Attention will be given to the works regarding non-linear vibrations of shell-type
structures, and also to the methodological approaches used in the solutions. The papers
dealing with initial imperfections, transverse shear deformation, anisotropy and orthotropy,
sti!ness, e!ects of thickness, and other complicating factors are also introduced. This review
is structured as follows: In section 2, a qualitative description is given of the various e!ects
which may be induced by the non-linearity in structural dynamic behaviour. In section 3,
a discussion of the speci"c di$culties encountered in the analysis of shell-type structures,
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both linear and non-linear compared with other structures, such as beams and plates, is
made. This discussion is reinforced by numerous references to the di$culties mentioned by
many researchers having worked in this "eld. In section 4, a survey of non-linear vibrations
of closed thin and thick shells is presented for di!erent geometries. The in#uence of
complicating factors is also introduced in this section. Studies on isotropic open shells,
singly and doubly curved, are reviewed in section 5. Investigations of non-linear vibrations
of closed and open, composite shells, are the subject of section 6. Also, closed and open
shells, interacting with a light medium, and with a dense #uid, are presented in section 7.
The experimental investigations on non-linear vibration of isotropic and composite shells,
in air or in interaction with a #uid, are grouped in section 8. Section 9 is devoted to the
discussion of various aspects of this complicated problem with comments. Finally,
section 10 presents some concluding remarks and suggestions concerning some possible
orientations for future research in the "eld of non-linear vibrations of shell-type structures.

2. SOME SPECIFIC FEATURES OF THE GEOMETRICALLY NON-LINEAR
BEHAVIOUR OF SHELLS

One of the most fascinating features encountered in the study of non-linear vibrations in
general is the occurrence of new and totally unsuspected phenomena. New, in the sense that
the phenomena are not predicted, or even hinted at, by linear theory. On the other hand, the
understanding of many experimental observations cannot even be attempted if the
non-linearity present in this system is not taken into account. Among these new facts,
one may mention [5, 18}42]:

� The variation of the resonant frequencies with the amplitude of vibration [5, 13, 14,
18}24].

� The amplitude dependence of the mode shapes [18}24].
� The jump phenomenon, and its corrresponding multi-values region in the non-linear
frequency response curve [25}27].

� The harmonic distortion of the non-linear response to harmonic excitation, and its spatial
distribution [13, 22, 28}30].

� The shift to the right of the non-linear random frequency response curves [31}33].
� The internal resonance [34}38].
� The occurrence of sub- or super-harmonic response phenomena [27].
� The occurrence of chaotic vibration [13, 26, 27].
� The existence of bifurcation points [26, 27, 34].
� The coupling, due to the non-linearity, between transverse and in-plane displacements
(see reference [39] for plate case, and references [40, 41] for the shell case).

� The participation of the companion mode, in addition to the driven and axisymmetric
modes, in the non-linear forced response of shells [5, 13, 25, 29].

� Etc.

Determination of the modal characteristics for free and forced vibrations of shell-type
structures, including or not complicating factors, is a problem of great technical interest.
The majority of the analytical studies to date have been formulated within the framework of
linear, small de#ection, structural theories, as mentioned above. In many cases, however, the
linear analysis is found to be insu$cient to explain and describe the behaviour of the
physical system adequately. Hence, the non-linear e!ects have to be taken into account in
the analysis, and also, in the design process [42]. Due to high acoustic loads and severe
thermal environment, the structural response is often non-linear and requires improved
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mathematical models for dynamic stress and fatigue life prediction [43]. For example,
aircraft panels excited at high sound pressure levels exhibit a pronounced non-linear
behaviour [44]. Also, recent years have witnessed an increasing use of new materials, such
as composites, and an increasing demand for more appropriate design principles, satisfying
the new performance requirements in future aerospace vehicles. On the other hand, the
theoretical progress realized in the last decades in the development of analytical and
numerical investigation tools, reinforced by the high performance of new computing
systems, enables engineers to explore use of advanced materials for shell structures, via the
establishment of adequate criteria design.
The modelling and simulation of the behaviour of complex aerospace structures are

perhaps the more challenging shell analysis tasks to date. Following the space shuttle
Challenger accident, the de"nition of large-scale non-linear analysis changed as a result of
the analyses performed on the solid rocket boosters. New design for the space shuttle
external tank and other cryogenic fuel tanks for hypersonic vehicles have also challenged
the shell analyst [45].
The mode shapes are of particular interest in the dynamic behaviour of a structure

since the axial and bending strains are dependent upon the "rst and second derivatives
of the mode shapes. Therefore, accurate prediction methods are needed to determine, at
large vibration amplitudes, the non-linear mode shapes and the corresponding resonance
frequencies of shell-type structures. Moreover, the investigation of the geometrically
non-linear vibrations of shells is intended to give not only useful information about
the non-linear frequencies and mode shapes, but also to lead to interesting indications
on the dangerous zones where the stresses (axial and bending) are concentrated. This is due
to the fact that the distribution of these stresses at large vibration amplitudes may be
completely di!erent quantitatively as well as qualitatively from that obtained in linear
theory. This important fact has been examined recently in some shell cases by Moussaoui
et al. [40, 41, 46, 47]. On the other hand, in the view of the increasing recourse in engineering
to modal testing techniques, it can be noticed that qualitative description of the non-linear
behaviour can be very useful in understanding data provided by modal testing, and can
open the way to the development of more appropriate modal testing models, taking into
account the non-linear e!ects.
As a conclusion, it appears in the light of these examples, that analysis of the non-linear

e!ects will play an important role in the coming years in design and engineering, and must
be included in the mathematical models of shell vibration, in order to know how far the
dynamic characteristics of real, modern, #ight structures, deviate from those predicted via
the linear theories.

3. DIFFICULTIES ENCOUNTERED IN GEOMETRICALLY NON-LINEAR ANALYSIS OF
SHELL-TYPE STRUCTURES

The task described at the end of the above section is not an easy one. As outlined in
reference [9], the subject of non-linear vibrations has always been a di$cult one, since many
of the solution characteristics, such as existence, uniqueness and superposition, which are
guaranteed for linear vibration problems, are not guaranteed, and often not valid, in the
non-linear case. The source of non-linearity may be (1) material, i.e., due to non-linear stress
strain relationships; (2) geometrical, i.e., due to the stretching stresses induced by large
displacements of a structure, especially if it is restrained at its ends or edges; (3) inertial, in
the case of structures having a concentrated or distributed mass; (4) or, due to non-linear
boundary conditions such as a non-linear spring, etc. [27]. In the present work, only the
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geometrically non-linear behaviour is considered (sometimes combined with other
complicating e!ects). Speci"cally, the non-linear e!ect is introduced through the inclusion
of the second order terms in the strain}displacement relationships.
One more di$culty in problems regarding geometrically non-linear vibrations appears to

be that the meaning of normal modes, which are powerful tools in linear vibration
problems, becomes obscure in the non-linear case, since time and space variables are not
separable in most non-linear vibration problems [48}54]. It is true that the concept of
a non-linear mode shape is not absolutely clear and universally accepted like its linear
equivalent. However, it is becoming quite familiar in the literature (see Nayfeh and Nayfeh's
paper [55] and their references [1, 2, 9, 11, 14}16, 18}20]), is very useful for the qualitative
understanding of the non-linear behaviour, and is expected to play an important role in the
development of a &&non-linear modal analysis theory''. The importance of the concept of
normal modes of vibration in the non-linear case has been extensively discussed in the
introduction of reference [56].
In addition to the di$culties generally encountered in the analysis of the non-linear

behaviour of structures with a simple geometry, such as beams or plates, the analysis of
shells involves many typical di$culties. Among these di$culties, one may mention:

1. Generally, shells have all the characteristics of plates along with an additional one:
curvature; the presence of curvature implies that, typically, bending cannot be separated
from stretching in the shell case, which considerably complicates the analysis of their
mechanical behaviour. The deformation of a shell can vary from purely extensional to
purely #exural [57].

2. As a result of (1), the bending theory of shells is governed by an eighth order system of
partial di!erential equations of motion, while the corresponding beam- or plate-bending
theories are only of the fourth order.

3. As outlined in reference [57], the generality of the shell equations permits a wide variety
of mode shapes with vastly di!erent character. For example, some of the solutions which
can be obtained from the equations describing a cylindrical shell are (a) the transverse
vibration of tubular beams; (b) the longitudinal vibration of tubular beams, (c) the
torsional vibration of tubular beams, (d) the #exural in-plane vibration of rings,
(e) the extensional in-plane vibration of rings, and (f) vibration modes unique to
shells [57].

4. An added complexity enters into the problem through the boundary conditions. This
observation on the boundary conditions may be illustrated as follows: in the case of
a rectangular plate which is simply supported along two of its opposite edges, the
number of possible problems which can arise, considering all combinations of &&simple''
boundary conditions which can exist on the remaining two edges, is 10; while, for
a cylindrical curved panel (i.e., a shell), the corresponding number is 136! [6]. The relative
complexities of plate and shell vibrations are discussed in detail elsewhere [58].

5. A large number of di!erent theories have been developed for shells. Therefore, there is no
general agreement in the literature on the linear as well as the non-linear di!erential
equations which describe the deformations of shells. Prominent among these are the
theories of Donnell [59], Mushtari [60], Love [61], Timoshenko [62], Reissener [63],
Naghdi and Berry [64], Vlasov [65], Sanders [66], Byrne [67], FluK gge [68],
Goldenveizer [69], Lur'ye [70], and Novozhilov [71]. The di!erence among the theories
are due to the various assumptions made about the form of small terms and the order of
terms which are retained in the analysis.

6. A surprising fact encountered by the newcomer to the subject of shell vibrations is that
the fundamental (i.e., lowest frequency) mode of circular cylindrical shells typically
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includes many sine waves around its circumference, contrary to the usual cases of beams
and plates [6, 40, 41, 46, 47].

7. In the case of large vibration amplitudes, the non-linear behaviour of the #at plates and
straight bars is usually of the hardening type (i.e., frequency increasing with vibration
amplitude). For shells, it may be either hardening [13, 40, 41, 46, 47, 48, 72}83], softening
[13, 14, 25, 29, 74, 76, 82, 84}90], or initial softening followed by hardening [74, 82, 89,
90]. The type of non-linearity of cylindrical shells depends on the shell geometrical
characteristics, the mode wave numbers, the boundary conditions and, the amplitude of
vibration. A speci"c discussion of this point is given in section 9.

8. In non-linear forced response of circular cylindrical shells, the de#ection shape has
sometimes to be expanded using many degrees of freedom, in particular, two asymmetric
modes (driven and companion mode), plus an axisymmetric mode [14].

It should be also noticed that the observation made in reference [25], according to which
&&very few experimental studies have been devoted to non-linear vibration of shells'' is still
true to a great extent. Also, few experimental works reported in the literature correspond to
special geometrical characteristics, boundary conditions, amplitudes of vibration, and mode
wave numbers. In our opinion, this is still insu$cient for clarifying completely the
fascinating, very rich, and often surprising subject of the non-linear behaviour of shells.

4. CLOSED ISOTROPIC SHELLS

4.1. NON-LINEAR FREE AND FORCED VIBRATIONS

Many investigators from di!erent "elds have contributed to the development of various
approaches to the problem of non-linear vibrations of shells. The "rst investigations on the
e!ect of geometric non-linearity on the vibration of shells were initialized by Reissner in
1955 [91]. He assumed that the non-linearity has a more pronounced e!ect on the arbitrary
time function, which modi"es the choice of the de#ected shape, than on the de#ected shape
itself. Hence, the modi"ed shape was used also for the non-linear vibration problem.
However, he concluded that in contrast to the linear case in which the chessboard de#ection
pattern is a natural choice, its selection in the non-linear problem must be more carefully
assessed [75]. It may be worth noticing here that the question of the choice of the de#ection
shape has been rediscussed recently in reference [92]. Using Donnell's shallow-shell theory,
Reissner isolated a single half-wave (lobe) of the vibration mode, and analyzed it for simply
supported shells, and found that the non-linearity could be either of the hardening or
softening type, depending upon the geometry of the lobe. Cummings [72] has shown that
the governing equations, used by Reissner, depend on the area of integration. Subsequently,
Chu [48] made a similar analysis which led him to an equation of the Du$ng type, and
gave results indicating that the non-linearity was of the hardening type, for a circular
cylindrical shell. This has been con"rmed by Nowinski [73] who concluded that the
non-linear e!ects are found to be considerably less manifest in cylinders than in the
corresponding #at plates. Evensen [93] performed a series of experiments in which shells
were subjected to vibration amplitudes up to three or four times the wall thickness and
observed that the non-linearity was of the softening type and that the vibrations were only
slightly non-linear. This observation has led him to re-examine Chu [48] and Nowinski's
[73] analyses, according to which the shell non-linear behaviour is of the hardening type.
Using the choice of functions proposed in reference [48] for the transverse displacement of
the shell w, and for the stress function F, it appeared impossible to satisfy the constraint that
the mid-plane circumferential displacement v be continuous and single curved. After some
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preliminary investigations, Evensen [93] showed that the de#ection function should be
given the form

w(x, y, t)"A(t) sin(m�x/¸) cos(ny/R)!(n�A�(t)/4R) sin�(m�x/¸). (1)

The term (!n�A�(t)/4R) sin�(m�x/¸) was added so that the solution satis"es the periodic
continuity condition on the circumferential displacement v, i.e.,

v (x, y, t)"v (x, y#2�R, t). (2)

Subsequently, Olson observed a softening non-linearity in a series of experiments [84]. In
a later work, Evensen and Fulton [74] presented a study of the non-linear dynamic
response of thin circular cylindrical shells, which was an extended version of Evensen's
original investigations. They found that the non-linearity may be either hardening or
softening depending upon the ratio of the number of axial waves to the number of
circumferential waves, although the shear diaphragm boundary conditions were not exactly
satis"ed at the shell ends in their analysis. The theoretical results were in a good agreement
with an experiment performed by Olson [84]. Evensen [94] analyzed the free and forced
non-linear vibrations of thin circular rings by assuming two vibration modes (driven and
companion modes), and then applying Galerkin's procedure to the equations of motion.
The analytical and experimental results exhibited several features that are characteristics of
non-linear vibrations of axisymmetric systems in general, and of circular cylindrical shells in
particular.
In another work, Evensen [95] derived two coupled equations for the non-linear

vibration of thin-walled circular cylindrical shells: one for the driven mode, and the other
for the companion mode. An approximate solution was given for the symmetric response,
i.e., when the companion mode is not ready to vibrate, and for the coupled response, i.e.,
when the companion mode participates in the vibration. Using a variational approach
(Rayleigh}Ritz method),Mayers andWrenn [75] used the more complicated shell theory of
Sanders to surmount the restriction on the utilization of the Karman}Donnel formulation
to shell problems when the number of circumferential waves is small. They arrived at the
conclusion that free vibration is non-periodic and is of the hardening type. The study did
suggest that the investigation of more accurate shell theories beyond that of Donnell's may
be of a considerable interest. Using the harmonic balance method without considering the
companion mode, Evensen [76] extended his work to in"nitely long cylindrical shells
vibrating in three cases: constrained, extensional, and inextensional vibrations. Dowell and
Venteres [78] derived a set of modal equations for non-linear #exural vibrations of
cylindrical shells employing the Donnell shallow shell theory. However, no solution was
presented for their modal equations. It was concluded however that the modal equations
are accurate in the limits of ¸/RPR and ¸/RP0, unlike the previously available results,
and that the method of &&averaged in-plane boundary condition'' generally yields good
results.
The non-linear free vibration of circular cylindrical shells has been examined by Atluri

[77], using Donnell's equations given by Chu [48], and Dowell and Ventres [78]. The
Galerkin technique was used to reduce the problem to a system of coupled non-linear
ordinary di!erential equations for the modal amplitudes. These equations have been solved
using the multiple-time-scaling technique. The results obtained showed a pronounced
non-linear hardening e!ect, which was due to the fact that the structure is e!ectively sti!er
when the axial in-plane displacements are prevented. The steady state periodic forced
response of cylindrical shells to transverse excitations has been studied by Ginsberg [86].
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The investigation was performed by a perturbation procedure which retained all
generalized co-ordinates appearing in the "rst approximation of the e!ects of non-linearity
in the strain}displacement relationships. Bending e!ects and tangential inertia e!ects were
also included. Large amplitude forced vibrations of simply supported thin cylindrical shells
and the stability of the response have been studied by Ginsberg [87], who employed the
FluK gge-Lur'e-Byrne shell theory, in conjunction with a Lagrangian description of the
deformation. The solution was based upon a perturbation technique and the method of
harmonic balance.
Readers interested in the historical aspect of the development of mathematical

formulations for non-linear vibrations of cylindrical shells may be referred to the tutorial
discussion given by Evensen in reference [5]. Attention was given to geometrically
non-linear free and forced vibrations of thin circular cylindrical shells, covering the period
from 1955 to 1972. A non-linear parametric vibration study, for closed circular
hinge-supported shells by a pulse load in the axial direction, has been presented by Volmir
[96]. Based on the di!erential equations of motion, the author derived an algebraic
equation describing the shell behaviour under parametric oscillations. Chen and Babcock
[25] analyzed the large vibration amplitudes of a simply supported thin-walled cylindrical
shell, using the perturbation method to reduce the governing non-linear di!erential
equations into a system of linear equations, for solving the steady state forced vibration
problem. The results indicate that the non-linearity may be either softening or hardening
depending on the mode. Also, an experimental investigation was conducted, and the results
were in qualitative agreement with the theory. Accounting for geometric non-linearity,
small arbitrary initial imperfections, and using the strain}displacement relations of the
Senders}Koiter non-linear shell theory, Radwan and Genin [79, 97] derived a set of
non-linear modal equations for thin shells of arbitrary geometry. They used the method of
assumed modes (method of modal expansion), and gave a numerical result, just for the
coe$cients of the Du$ng equation which they obtained by solving the problem. It is
interesting to note that most of the results indicated a hardening-type non-linearity. An
application of this model has been made to simply supported circular cylindrical shells, based
on the single-mode approach. The well-known Du$ng equation was obtained and numerical
results have been given just for the coe$cients of the terms arising in this equation.
The "rst general formulation, based on the "nite-element theory, was presented by Raju

and Rao [80], to analyze large amplitude asymmetric vibrations of shells of revolution,
using a curved shell element of 12 degrees of freedom. It is noted that the trends of
non-linearity in the problems considered in this paper were of the hardening type. Using the
Bubnov}Galerkin method, the non-linear vibration of a thin-walled elastic cylindrical shell
of elliptic cross-section has been analyzed by Kozarov and Mladenov [98]. They gave the
amplitude}frequency characteristics of shells, for various eccentricities of the shell
cross-section.
The non-linear characteristics of free vibrations of conical shells, including both circular

cylinders and annular plates as special cases, have been investigated by Ueda [88] by
imposing an axisymmetric mode, which is the square of the asymmetric mode. Donnell-type
shell theory was utilized to describe the shell, and trial functions along the generatrix were
constructed by the "nite-element method as a cubic piecewise polynomials. Bogdanovich
and Feldmane [99] have proposed a procedure for non-linear parametric vibrations of
a cylindrical shell in order to select the required number and form of the functions basis
used to approximate its de#ection.
Szeplinska-Stupnicka [49] attempted to generalize the idea of the &&single non-linear

mode method'' to continuous systems, and to show that the &&harmonic balance principle''
can be regarded as a single-term solution in a generalized Ritz method, which is the method
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that minimizes the time integral involved in Hamilton's principle with respect to functions
of spatial variables and a set of coe$cients associated with boundary conditions. The
essential feature of the proposed method is that, under the assumption of a harmonic
solution, it allows not only the natural frequency, but also the mode shape of vibration, to
be a!ected by the non-linearity and, as a result, to be amplitude dependent.
The free non-linear vibrations of a long cylindrical shell resting on an elastic foundation

have been considered by Victor and Pongsan [100]. Using Donnell's shallow-shell theory,
Varadan et al. [81] have reintroduced the mode-shape expansion that has been considered
by Amabili [14] as a simple generalization of Evensen [95], in order to show that the
axisymmetric term of Dowell and Ventres [78], and Atluri [77], gives hardening-type
results. The modal equation was obtained by the Galerkinmethod, and solved by the fourth
order Runge}Kutta method, to obtain the amplitude}frequency relationship.
Ramachandran [101] derived the von Karman-type equations for studying the

non-linear vibrations of a cantilevered helicoidal shell. A series satisfying the geometric
boundary conditions has been assumed for the transverse displacement and Galerkin's
procedure was employed. Emphasis has been given to the fundamental mode and results
have been presented only for this mode. Using a new asymptoticmethod, based on Bolotin's
method for the linear case, Andrianov and Kholod [102] obtained an analytical solution,
describing the non-linear oscillation of a shallow cylindrical shell.
Using a C

�
continuous, QUAD-4 shear #exible shell element, based on the "eld

consistency principle, the non-linear free #exural vibration of thin circular cylindrical shells
has been studied by Ganapathi and Varadan [82], without imposing any restriction on the
mode shapes. Primarily, an attempt was made to clarify the existing controversies in the
prediction of the non-linear behaviour of isotropic circular cylindrical shells through
a dynamic response analysis, based on a "nite-element formulation. The non-linear
governing equations have been solved using a Wilson-� numerical integration scheme with
�"1)4. For each time step, modi"ed Newton}Raphson iterations have been employed to
achieve equilibrium at the end of that time step. However, no indication was given on the
form of the vibration mode shapes. Also, no computation was made of the stress
distributions, when the shell vibrates at various mode shapes order.
The large-amplitude forced vibrations of empty steel thin-walled silos have been

investigated by Fernando and Godoy [103]. The basic geometry con"guration modelled
was a cylinder clamped at the bottom with a top conical roof. The instability was identi"ed
from "nite-element computations of the time response of the shell using a criterion due to
Budianski and Roth. Popov et al. [104] and McRobie et al. [105] presented two studies;
one on the vibrations of cylindrical shells, parametrically exited by axial forcing, and
another on the internal auto-parametric instabilities in the non-linear free vibrations of
a cylindrical shell, using geometric averaging. A Rayleigh}Ritz discretization of the von
Karman}Donnel equations was used, and led to the Hamiltonian and transformation into
action-angle co-ordinates, followed by averaging, which provided readily a geometric
description of the modal interaction. The dynamics of shallow shells, taking into account
physical non-linearity, has been considered by Chinh [106]. More recently, Fu and Chen
[107] presented an analysis of non-linear vibration of a truncated conical shell in large
overall motion. The shell considered was elastic and moderately thick.

4.2. NON-LINEAR VIBRATIONS WITH COMPLICATING FACTORS

Althoughmany publications deal with geometric-type non-linearity (see section 4.1), only
a few papers are available which take into account, in addition to this type of non-linearity,
other complicating e!ects.
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Kildiberkov [108] investigated the non-linear vibrations of a thin circular cylindrical
shell with initial imperfections. He studied also the in#uence of static forces and acoustic
pressure on the observed non-linear vibrations. The e!ect of initial camber on the
non-linear vibrations of cylindrical shells has been investigated analytically by Kubenko
et al. [109], within the framework of geometrically non-linear theory. It was shown that
initial camber results in splitting of the frequency spectrum and natural vibrations of the
shell. Liu and Arbocz [110] presented a theoretical investigation of the in#uence of di!erent
boundary conditions on the non-linear vibration of thin-walled cylinders, employing the
non-linear Donnell-type equations, and the method of averaging. The e!ect of initial
geometric imperfections on large-amplitude vibrations of truncated conical shells subjected
to pressure load has been investigated by Reseka and Helmy [111]. A mathematical model
has been performed by means of the "nite-element method, and the method of generalized
co-ordinates, by Kovtunov [112], for studying the dynamic stability and non-linear
vibration parameters of ideal cylindrical shells, and cylindrical shells with added mass with
regard to their geometrical non-linearity. The numerical methods suggested by the author
have been realized in the software package STADYS (stability and dynamic of structures).
Sivadas [113] analyzed the vibration characteristics of pre-stressed circular conical shells,

using the moderately thick shell theory with shear deformation and rotary inertia.
A semi-analytical isoparametric "nite element with three nodes per element and "ve degrees
of freedom per nodes was used. The non-linear response of thin cylindrical shells with
longitudinal cracks, subjected to internal pressure and axial compression load has been
studied analytically by Starnes and Rose [114]. More recently, a model of
three-dimensional vibrations of thick spherical shell segments with variable thickness was
presented by Kang and Leissa [115]. Also, the non-linear supersonic #utter of circular
cylindrical shells has been investigated by Amabili and Pellicano [116], using the Donnell
non-linear shallow-shell theory. The e!ect of viscous structural damping has been taken
into account and results show that the system loses stability by standing-wave #utter
through speci"c bifurcation. A very good agreement between theoretical and experimental
data has been found for #utter amplitudes.

5. OPEN ISOTROPIC SHELLS

Non-linear problems concerning open shells, which may be either shallow or deep, of
various geometries have not received much attention in the literature as can be seen,
recently, in a review paper by Liew et al. [11]. This section introduces some references on
the non-linear vibrations of isotropic shallow shells which have not been documented in
reference [11]. To complete this review, studies on non-linear vibrations of composite
shallow shells will be presented in section 6.
The paper by Leissa and Kadi [90] was the "rst published study of large-amplitude

vibrations of doubly curved shallow shells having arbitrary curvatures. It was also shown
that all these curvatures yielded "rst a soft spring, followed by a hard spring, type of
frequency}amplitude response, except for the hyperbolic paraboloidal shallow shell, which
was entirely hard spring. Kulterbaev [117] analyzed the non-linear transverse vibrations of
a #exible cylindrical panel subjected to a time-random longitudinal force. The e!ects of
large vibration amplitudes on #exural vibrations of an orthotropic shallow cylindrical
panel, on an elastic Winkler foundation, have been examined by Ramachandran and
Murthy [118], using the dynamic von Karman "eld equations and assuming the edges of
the panel to be simply supported. Lau and Cheung [119] derived an amplitude incremental
variational principle for non-linear vibrations of elastic systems, adopting the



NON-LINEAR VIBRATION OF SHELLS 171
Rayleigh}Ritz method, and especially the "nite-element method. The linear solution for the
system was used as the starting point of the solution procedure for the non-linear case, and
the amplitude was then increased incrementally. The panel was treated as a system with one
degree of freedom, and the presence of a phenomena called &&vibration break-o!'', and
resonance type was revealed.
The stability of non-linear forced vibrations of shallow rectangular-planform cylindrical

shells has been investigated by Grigorinko et al. [120], using a shell modelled as a system
with one degree of freedom, and the Bubnov}Galerkin method. Sinharay and Banergee
[121] investigated the large-amplitude free vibrations of shallow spherical and cylindrical
shells following a new approach based on Berger's hypothesis. In this study, it was assumed
that the di!erential equations are uncoupled and thus simpli"ed. Excellent results were
obtained for both movable and immovable edge conditions in a single-mode approach.
Sathyamoorthy [122] presented a shallow-shell theory for the geometrically non-linear

analysis of moderately thick isotropic spherical shells, including the e!ects of transverse
shear deformation and rotary inertia. Solution to the system of thick shell equations has
been obtained by means of Galerkin's method and the Runge}Kutta procedure. He
concluded that the transverse strain and rotary inertia e!ects are important in the linear as
well as in the non-linear response of shallow spherical shells. Kobayashi and Leissa [89]
examined the e!ect of thickness and curvature upon the large-amplitude vibration of
shallow shells supported by shear diaphragms. The governing equations for non-linear
vibration of doubly curved thick shallow shells were derived, based upon FSDF. Applying
Galerkin's procedure and eliminating all of the variables except the transverse
displacement, the governing equations were reduced to an elliptic ordinary di!erential
equation in time.
Lasiecka and Valente [123] studied a coupled non-linear system of equations describing

the vibrations of shallow thin spherical shells. Ye [124] used the Marguerre-type dynamic
equations to investigate the non-linear vibration and dynamic instability of thin shallow
spherical and conical shells subjected to periodic transverse and in-plane loads. The
solution of the di!erential equations was made by the Galerkin's method, which led to
Du$ng and Mathieu equations. A new shell-type dynamic vibration absorber was
presented by Aida et al. [125], for suppressing several modes of vibration of a shallow shell
under harmonic load. Using the Den Hartog method, numerical results were obtained
which demonstrated the usefulness of shell-type dynamic vibration absorbers. Based on the
investigation made by Popov et al. [126] on the vibrations of cylindrical shells
parametrically excited by axial forcing, Foale et al. [127] investigated a number of methods
for obtaining a low-dimensional dynamical system from a set of partial di!erential
equations describing the non-linear vibrations of a shallow cylindrical panel under axial
forcing. The non-linear free vibration of a cylindrical thin panel with curvature and twist
has been treated by Hu and Tsuji [128], by means of the Rayleigh}Ritz method, assuming
two-dimensional polynomial functions as displacement functions.

6. CLOSED AND OPEN COMPOSITE SHELLS

Analysis of shell structures composed of composite materials has been of a considerable
research interest, particularly, in the development of space technology. For advanced
information on this subject, readers can refer the monograph by Leissa [6] for early works,
or Oevy's paper [129] for directions for the design of orthotropic cylindrical shells. More
recently, a literature review on the vibration of composite structures has been presented by
Bert [130].
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Using the Galerkin method and assumed modes, Pandalai and Sathyamoorthy [131]
analyzed the non-linear #exural vibrations of thin elastic orthotropic oval cylindrical shells.
Kvasha [132] studied the forced vibrations of three-layer plates and shells made from
physically non-linear materials. An orthotropic model has been applied by Volmir and
Ponomarev [133] to the analysis of the dynamic behaviour of closed cylindrical shells,
prepared from a composite material. The solution of the problem was obtained on the basis
of geometrically non-linear dynamic equations in the theory of shallow shells, derived from
the Kirchho!}Love hypothesis. El-Zaouk and Dym [134] employed the same
approximation, for the transverse displacement assumed by Evensen and Fulton [74], in
the analysis of isotropic cylinders, to study orthotropic doubly curved shells. Using
Bubnov's method to reduce the non-linear equations and a strain energy method, the
problem of non-linear vibrations excited by a transverse harmonic load in three-layer
plates, and shallow shells of rectangular plan-form and asymmetric thickness, has been
examined by Goloskokov and Dmitrenko [135]. Bogdanovich and Feldman [136]
analyzed the non-linear parametric vibrations of closed, viscoelastic, orthotropic cylindrical
shells. Solution of the problem was obtained by the Bubnov}Galerkin method, which led
to a non-linear ordinary integrodi!erential equation. A "nite-element analysis of
geometrically non-linear transient response of laminated anisotropic shells has been
presented by Chao and Reddy [137].
The transverse shear e!ects on the non-linear instability behaviour of composite

cylindrical shells under axial compression, hydrostatic pressure, and torsion, has been
investigated by Chengti and Chienbin [138]. It has been shown that in many cases the
transverse shear e!ect is important, and should be taken into account in the non-linear
stability analysis of composite shells. Reddy and Chandrashekhara [139] studied
non-linear transient response of doubly curved shells by the "nite-element method using
"rst order shear deformation theory. Chia [140] investigated the non-linear vibration and
post-buckling of imperfect panels by a perturbation procedure. Introducing the e!ect of
initial imperfection, the laminated cross-ply circular cylindrical shells with clamped and
simply supported ends have been studied by Iu and Chia [141]. The transverse equation of
motion was ful"lled by the Galerkin procedure, and the solution has been obtained by the
harmonic balance method.
Non-linear free vibrations of circular cylindrical shells composed of composite materials

have been examined analytically by Vinson [142]. Galerkin's method and a fourth order
Runge}Kutta method were employed to determine the amplitude}frequency relationships
for isotropic and composite (orthotropic) cylindrical shells.
Fu and Chia [143, 144] analyzed multi-mode vibrations of thick panels by the harmonic

balance method. An extension of Donnell's equations for isotropic cylindrical shells has
been made by Kumar [145], via the anisotropy concept of Lekhnitsky, to analyze the
large-scale oscillation and buckling behaviour of anisotropic cylindrical shells, subjected to
biaxial in-plane normal stresses. Raouf and Palazotto [146, 147] attempted to solve
non-linear dynamic problems of laminated shell panels using numerical methods. Kapania
and Byum [148] studied imperfect laminated panels by the "nite-element method.
Dong [149] proposed a new andmore direct approach to the vonKarman}Donnell-type

governing equations of non-linear vibrations of shallow shells of revolution, and applied it
to non-linear axisymmetric free vibrations of orthotropic, shallow, thin conical and
spherical shells. Asymptotic expressions for spacial modes, and the amplitude}frequency
response of the shells were derived.
The e!ects of large vibration amplitudes on #exural vibrations of moderately thick

orthotropic spherical shells, taking into account the transverse shear deformation and
rotary inertia e!ects, have been studied by Sathyamoorthy [150]. He obtained a coupled set
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of non-linear equations which have been solved using Galerkin's method and employing the
numerical Runge}Kutta integration procedure. A geometrically non-linear theory and
numerical results have been presented by Andrianov et al. [151], for free vibrations of thin,
simply supported circular cylindrical, stringer-sti!ened shells. An asymptotic procedure was
followed, which separated the solution of the non-linear equations of motion into two parts:
an inner part which applies to the boundary layer, and an outer part. Employing Sanders'
shell theory, and a specialized "nite-element method, Selman and Lakis [83] studied the
non-linear dynamics of open and closed orthotropic cylindrical shells. A non-linearity of the
hardening type was obtained for the same closed circular cylindrical shell simply supported
at the ends investigated by Nowinsky [73], and Raju and Rao [80].
Abe et al. [152] examined the non-linear free vibration characteristics of the "rst and

second vibration modes of laminated shallow shells, with rigidly clamped edges. Using
Galerkin's procedure, simultaneous non-linear ordinary di!erential equations were derived
in terms of amplitudes of the "rst and second vibration modes. The Gauss}Legendre
integration method, and the shooting method, were used for the solution.

7. SHELLS IN INTERACTION WITH FLUID

Non-linear vibrations of a cylindrical shell, "lled with #uid, have been investigated by
Obraztsova [153], and a numerical example of a steel cylindrical shell, "lled with water, has
been treated at assigned parameter values. The non-linear equations were obtained by the
theory of shallow cylindrical shells, and solved by application of the Bubnov}Galerkin and
harmonic balance methods. In another paper by Obraztsova [154], a study on non-linear
axisymmetric vibrations of shallow spherical shell, containing an ideal incompressible #uid,
was presented.
Using geometrically non-linear equations for shallow shells, the interactions between the

conjugate #exural modes, the #exural modes corresponding to the nearest natural
frequencies, and the #exural modes of shells in gas #ow have been analyzed by Kubenko
et al. [155]. Particular attention has been given to the determination and analysis of the
possible #exural modes of shells under conditions of various resonance.
Boiarshina [156] analyzed the non-linear vibrations induced by periodic external forces

in an elastic cylindrical shell partially "lled with #uid. For resonance conditions, "rst
integrals were determined, indicating a coupling between the antisymmetric vibrational
modes of the free surface of the #uid and the #exural vibrations of the shell. The non-linear
parametric vibrations of liquid-"lled cylindrical shells with an initial imperfection have been
studied by Pavlovskii and Filin [157] using basic functions in the form of coupled bending
vibration modes. The equations of motion were solved by an asymptotic method.
Gonialave and Batista [158] have presented a model for non-linear dynamic interaction
between a #uid and thin elastic shells, in order to examine the e!ect of shell and #uid
parameters on the non-linear structural vibration response in terms of frequencies. These
studies led, using the Galerkin procedure, to a system of coupled non-linear algebraic
equations for the modal amplitudes u

�
, v

�
, and w

�
, which were solved by the

Newton}Raphson method. The results obtained have shown how variations in the
geometrical parameters (¸/R, h/R), and wave numbers (m, n), a!ect the degree and type of
non-linearity. In another paper, Gonialave and Batista [159] considered non-linear
vibrations of simply supported circular cylindrical shells "lled with inviscid and
incompressible #uid, using Sanders' non-linear theory. They excluded the companion mode
and found that the presence of a dense #uid gives more strongly softening results, compared
to those for the same shell in vacuo.
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The linear and non-linear natural frequencies versus shell amplitudes have been
examined by Selmane and Lakis [160] for thin, orthotropic and non-uniform open
cylindrical shells, submerged and subjected simultaneously to an internal and external #uid.
They developed a method including thin shell theory, #uid theory, and the "nite-element
method, and obtained a non-linear equation of motion, which was solved by the
fourth-order Runge}Kutta numerical method. Both softening- and hardening-type
non-linearity were found depending on the geometry. The non-linear free and forced
vibrations of a simply supported, circular cylindrical shell, in contact with an
incompressible and inviscid, quiescent and dense #uid have been investigated by Amabili
et al. [14]. The problemwas reduced to a system of ordinary di!erential equations by means
of Galerkin's method, and the e!ects of both internal and external dense #uid have been
examined.
In a series of paper presented recently by Amabili et al. [12, 13, 29, 30], the non-linear

dynamics and stability of simply supported circular cylindrical shells containing inviscid
incompressible #uid #ow was investigated in detail. The non-linearity due to
large-amplitude shell motion has been considered using the non-linear Donnell's shallow
shell theory, taking into account the e!ect of viscous structural damping. Part I deals with
a detailed study of the stability of the structure [12], Part II deals with large vibration
amplitudes without #ow [13], Part III deals with truncation e!ects without #ow and
experiments [29], and Part IV deals with large vibration amplitudes with #ow [30].

8. EXPERIMENTAL STUDIES

The development of non-linear models cannot be made adequately, unless they are made
in the light of the results of experimental investigations. These investigations should play an
important role before and after the theoretical work. The experimental data guide the
choice of the basic assumptions, and indicate the form of the expected solutions before
starting the modelling. In the second stage, they permit one to validate the numerical
results, and indicate the range of validity and the degree of accuracy of each type of solution.
It is believed that the "rst experimental investigations on the e!ect of geometric
non-linearity on the vibrations of shells were made by Evensen [93], for closed circular
cylindrical shells. He noticed that the experiments suggest that the non-linearity is of the
softening type, and for the shells that were tested, the vibrations were only slightly
non-linear. These observations have led him to a re-examination of the non-linear analysis
of circular cylindrical shell, as has been mentioned in section 3.
In preparing for #utter experiments [161], Olson [84] performed vibration tests on

several cylindrical shells made of copper, including results on large vibration amplitudes.
The shell tested had a thickness-to-radius ratio of 0)00055 (a very thin shell). He concluded
that large vibration amplitudes of cylindrical shells exhibit a slight non-linearity of the
softening type, as has been observed by Evensen [93]. The experimental result of Olson is
frequently used by researchers to validate their models [13, 14, 82, 88, 95]. Evensen [93, 94]
extended his work, and examined both theoretically and experimentally non-linear #exural
vibrations of thin circular rings. A ring is a particular case of a shell when the length tends to
zero. He obtained a slight non-linearity of the softening type and a good agreement between
theory and tests for a shell having a thickness-to-radius ratio of 0)00127. Matsuzaki and
Kobayashi [85] analyzed theoretically and experimentally a clamped circular cylindrical
thin shell having a thickness-to-radius ratio of 0)00092, and observed the participation of
a companion mode over a range of frequency and amplitude. He also modi"ed the mode
expansion in order to satisfy the di!erent boundary conditions, and retained both the
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particular and the homogeneous solutions for the stress function. A softening-type
non-linearity was found in this case.
Careful non-linear vibration experiments have been performed by Chen and Babcock

[25] on a circular cylindrical shell, simply supported, having a thickness-to-radius ratio of
0)00243. They pointed out that it is impossible to simulate this boundary condition in the
laboratory, and used a shell with rings at both ends to approximate the simply supported
condition. Various non-linear phenomena have been observed, and the response}frequency
relation of the companion mode has been measured. It has been concluded that the
corresponding theoretical results show a satisfactory agreement with the experimental
results, and the resulting single-mode response is either hardening or softening, depending
upon the mode of vibration.
Sivak and Telalov [162] studied experimentally a vertical circular cylindrical shell, made

of titanium alloy, in contact with water having a free surface. Experiments were performed
with the shell partially "lled and partially submerged in water. Many experiments indicated
a softening-type non-linearity, while the completely "lled shell showed a hardening
non-linearity, an e!ect which was increasing with the number of nodal diameters.
Large-amplitude vibrations of two cantilevered composite circular cylindrical shells have
been examined experimentally by Fu and Chia [163]. They found that almost all responses
have a softening non-linearity. More recently, an important paper presented by Amabili
et al. [29] deals with theoretical and experimental studies on the non-linear dynamics and
stability of circular cylindrical shells containing #owing #uid. This work has been presented
in Part III of a series of papers. A series of experiments were carried out on a water-"lled
circular cylindrical shell, made of steel. The results obtained were in very good agreement
with the theory presented. It was observed, also, that the liquid (water) contained in the shell
generated a much stronger softening behaviour of the system.

9. COMMENTS AND DISCUSSION

The problem of large vibration amplitudes of shell-type structures has given rise to
a number of theoretical studies, as has been reviewed above. It appears from the literature
survey that in spite of much research work on non-linear vibrations of shells, no exact
solution for the problem of non-linear vibrations of shell-type structures is known. It can be
seen also that, generally, the dynamic behaviour of shell-type structures is governed by three
non-linear coupled partial di!erential equations, involving three dependent variables u, v,
and w, which are, respectively, two tangential and one normal displacement components of
a point of the shell middle surface. These equations can be reduced to two simultaneous
partial di!erential equations involving only the Airy stress function F and the transverse
displacement when the tangential inertia terms are neglected. This approach is
consequently limited to shallow-shell analysis, or deep shells having large numbers of waves
in their mode shapes. Using three equations of motion, in terms of u, v, and w, is more
general. However, exact solutions of the non-linear partial di!erential equations in closed
form do not exist in the literature owing to the di$culty of the mathematical treatment.
Approximate analytical solutions exist, but under very special conditions.
The basic approach used in majority of these studies is to assume the shape of the

vibration modes, sometimes referred to as generalized co-ordinates, and then to derive a set
of non-linear ordinary di!erential equations in time using Galerkin's approximation
procedure (averaging method). This method is a very powerful approximation method that
reduces a system of non-linear partial di!erential equations into a system of non-linear
ordinary di!erential equations. Also, the Galerkin method provides an insight into the
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non-linear coupling of various vibration modes during the solution procedure. However,
the results are highly dependent on the assumed de#xtion shapes. Completely di!erent
results can be obtained by a small di!erence in the assumed de#exion shapes as can be seen
from the previous investigations on the subject of non-linear vibrations of shells. In the
analytical methods, the spatial and temporal problems are solved analytically. The
temporal problem is usually solved by the harmonic balance method, the perturbation
method, the multiple scales method or the averaging method. These methods are generally
used for simple structures and simple boundary conditions. The perturbation method can
only be applied to a system with weak non-linearity and the computation procedures
become quite cumbersome if many terms in the perturbation series are required to achieve
a desired degree of accuracy. The "nite-element approach has also been used in the problem
of non-linear vibration of shells. Application of the "nite-element method has the
disadvantages of the very long time for the solution and the amount of manual labour
involved in preparing the input data. But, it can be considered as a very important tool,
especially for studying geometrically complex shell-type structures.
The single-mode method was e!ectively used in investigations of large vibration

amplitudes of a wide class of continuous systems [49]; in particular, in most of the
papers concerned with the non-linear dynamic response of beams, the single-mode
assumption was made as a tool for investigating the e!ect of the geometric non-linearities
on resonant frequencies [13, 14, 18, 164]. This is due to the simpli"cation it introduces in the
theory on the one hand, and on the other hand, because the error it introduces in the
estimation of the non-linear frequency remains small. In the case of non-linear vibration of
shells, it has never been clari"ed how many terms in the expression of the #exural
displacement are necessary to obtain a good accuracy in the model. This question,
which is still open, has been examined recently by Amabili et al. [13], and it was concluded
that not only the "rst but also the third axisymmetric mode is fundamental for the adequate
description of the non-linear response of closed circular cylindrical shells. In another
study on constrained vibrations of in"nitely long circular cylindrical shells, a spectral
expansion of the transverse displacement has been assumed with 12 basic functions
(multi-mode approach) [40, 41, 46, 47]. It has been shown that, for the "rst mode,
calculations can be made with only six basic functions of w and the results exhibited no
signi"cant change in both the values of the non-linear frequencies, and the basic function
contributions.
One problematic point, which is not encountered in non-linear vibration problems of

plates and beams, is the question of the behaviour type, softening or hardening, of
cylindrical shells. Some of the analyses have led to the conclusion that the non-linear
behaviour was of the hardening type (i.e., the increase in resonant frequencies as the
amplitude increases), others have concluded that it was of the softening type (i.e., the
decrease in resonant frequencies as the amplitude increases), while other analyses yielded
softening "rst, followed by hardening, depending on the mode of vibration and the
structural parameters. The experiments on cylindrical shells that yielded only softening
response may have been for small amplitudes, too small to obtain subsequent hardening.
From the review on the non-linear works exposed in sections 3 (point 7) and 4.1, it can be
seen that experiments on forced vibrations, however, have shown that the non-linear
behaviour is of the softening type on certain cylindrical shells. This discrepancy, between the
analyses, seems to have stemmed from the choice of the trial functions that were assumed in
solving the equations, rather than from di!erences in shell theories or other assumptions
[88]. However, Evensen [5, 74], and Ganapathy and Varadan [82] assume that the type of
non-linearity of the shells depends on the values of shell aspect ratio � and the thickness
parameter �. A reliable discussion and interesting comment have been made about this
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subject between Raju and Rao [165, 166], and Evensen [167], and between Prathab [168]
and Evensen [169]. It is interesting to note that these comments caused Ganapathy and
Varadan [82] to reinvestigate recently the large-amplitude free #exural vibrations of
isotropic circular cylindrical shells. Other discussions between leading authors have
recently been published in the Journal of Fluids and Structures [170}172]. More recently,
another discussion has been made between Amabili et al. [173] and Moussaoui et al. [92]
on the hardening strong non-linearity observed in reference [41] for moderately thin,
in"nite circular cylindrical shells. This set of discussions testify that the topic of circular
cylindrical shells behaviour still presents open questions, which should be clari"ed through
experiments on non-linear vibrations of moderately thin and thick shells. To our
knowledge, the experiences reported in the available literature, concerning large vibration
amplitudes, have been carried out on very thin shells (see section 8), for which the softening
behaviour has been obtained.

10. CONCLUDING REMARKS

On the basis of the references reviewed in this paper, and the comments presented above,
the following remarks can be made:

� Although many publications deal with geometric-type non-linearity, including or not
complicating e!ects, few papers have appeared on material-type non-linearity or
combinations of the two types. Also, very little information can be found in the literature
about the e!ects of geometrical non-linearity on viscoelastic shells.

� The number of references reporting experimental investigations is low. This area needs
renewed attention in order to clarify more the non-linear behaviour of shell-type
structures.

� The non-linear vibrations of hybrid shell-type structures, and combined structures,
remain a "eld to develop.

� Most of the studies on non-linear vibrations of shells (except those of Evensen [94], Chen
and Babcock [25], Olson [84] and Amabili et al. [12, 116], Moussaoui and Benamar
[40] and Moussaoui et al. [41, 46, 47]), do not give any indication of the physical form of
the vibration modes at large vibration amplitudes. In other words, if the form of the
circular cylindrical shell vibrating freely at small amplitudes (linear case) is known (see for
example references [174, 175]), what does it become when the shell vibrates at large
amplitudes?

� One may observe also that most of the works on non-linear vibrations of shells (including
complicating factors or not) restrict the investigations to the amplitude}frequency
relationship and stability. However, the stress distributions on the surface of the structure
are not analyzed. This non-linear e!ect is of crucial importance in engineering design, and
very signi"cant, in comparison with the linear case, as has been shown byMoussaoui and
Benamar [40], and Moussaoui et al. [41, 46, 47].

� In many applications (aircraft fuselage, missile bodies, etc.), sti!eners are used to
strengthen thin shells [4]. However, although the studies on linear vibrations of sti!ened
shells have been extensive, the studies on non-linear vibrations of sti!ened shells are very
little.

These remarks show that many aspects of the complicating problem of non-linear
vibrations of shell-type structures need to be clari"ed and that much research work has still
to be done.
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